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Abstract In the present paper, we propose a new multipoint type global optimization model
using a chaotic dynamic model and a synchronization phenomenon in nonlinear dynamic sys-
tems for a continuously differentiable optimization problem. We first improve the Discrete
Gradient Chaos Model (DGCM), which drives each search point’s autonomous movement,
based on theoretical analysis. We then derive a new coupling structure called PD type cou-
pling in order to obtain stable synchronization of all search points with the chaotic dynamic
model in a discrete time system. Finally, we propose a new multipoint type global optimi-
zation model, in which each search point moves autonomously by improved DGCM and
their trajectories are synchronized to elite search points by the PD type coupling model. The
proposed model properly achieves diversification and intensification, which are reported to
be important strategies for global optimization in the Meta-heuristics research field. Through
application to proper benchmark problems [Liang et al. Novel composition test functions
for numerical global optimization. In: Proceedings of Swarm Intelligence Symposium, 2005
(SIS 2005), pp. 68–75 (2005); Liang et al. Nat. Comput. 5(1), 83–96, 2006] (in which the
drawbacks of typical benchmark problems are improved) with 100 or 1000 variables, we
confirm that the proposed model is more effective than other gradient-based methods.
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1 Introduction

The development of the global optimization method, which obtains global minima with-
out being trapped at local minima, has been investigated extensively. So-called “Physically
inspired” optimization methods, which use dynamic models as computation models, have
been proposed and have mainly been applied to continuously differentiable problems. The
common characteristic among these models is that a global search is executed using the
autonomous movement of the search point, which is driven by a vector quantity given by
its dynamic system, such as a gradient vector, and the search range is then narrowed by an
annealing procedure. Examples of these methods include the Discrete Gradient Chaos Model
(DGCM) [1–3] and the Hamiltonian Algorithm (HA) [5].

In recent years, multipoint optimization methods, which use coupled multiple search
points moving stochastically, have been proposed against the backdrop of rapid development
of computer functionality. Furthermore, meta-heuristics, in which heuristics are combined
based on a very good search strategy, called diversification and intensification [4], have
attracted a great deal of attention. Most meta-heuristics are multipoint optimization methods.
Examples of these methods include the Genetic Algorithm (GA) [6] and Particle Swarm Opti-
mization (PSO) [7]. In meta-heuristics, diversification means that the search points should
search globally without convergence to local minima. Intensification means that the search
points should search intensively around the good solution. This strategy is based on the Prox-
imate Optimality Principle (POP) (which stipulates that good solutions at one search level are
likely to be found close to good solutions at an adjacent search level [4]. This often holds for
practical problems). Proper combination of diversification and intensification is important for
global optimization. Generally, in these methods, interaction among all search points, such
as the coupling structure, is mainly used as the driven force. Therefore, these methods have
a drawback in that once all of the search points are attracted to one search point, diversity is
lost. In this case, either the search is terminated or a random search, which is not necessarily
based on good strategy, may be executed in order to obtain diversity.

In the present paper, we propose a new multipoint type of global optimization model in
which each search point is autonomously driven by a chaotic dynamic model, and the tra-
jectories of the search points are synchronized for a continuously differentiable optimization
problem with upper-lower constraints:

min
x

E(x) (1a)

subj. to pi ≤ xi ≤ qi , (1b)

where x = [x1, . . . , xN ]T ∈ RN , the objective function E : RN → R1 is once continu-
ously differentiable, the gradient of the objective function ∇E(x) is a column vector, and
i = 1, . . . , N , unless otherwise stated. The remainder of the present paper is organized
as follows. In Chapter 2, the characteristics and drawbacks of the DGCM are discussed,
based on stability analysis and one of the drawbacks is improved by the toroidalization of
the constraints [8]. This model is referred to herein as the DGCMwT. The nonlinear syn-
chronization phenomena are then discussed, and the PD type coupling model is derived in
order to achieve a stable synchronization of trajectories of all search points with the chaotic
dynamic models in the discrete time system in Chapter 3. In Chapter 4, we propose a new
global optimization model in which the movements of multiple search points are driven by
a chaotic dynamic model and in which their search trajectories are synchronized. We then
confirm the effectiveness of the proposed model through application to proper benchmark
problems.
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In the proposed method, the DGCM is used as the driving model to implement a global
search. The strong point of the DGCM is that its update equation is written using a determin-
istic difference equation. Therefore, we can analyze the stability of its converging solution,
and we can expect the solution, to which the dynamics will converge. Hence, we choose the
DGCM in order to implement a predictable global search rather than to provide random diver-
sity. In Chapter 2, we analyze the convergence solution of the DGCM using the bifurcation
diagram and the stability analysis, and we improve the DGCM based on the stability analysis.
The DGCMwT, which is the improved model, converges to the widest valley, which has the
widest attraction range of all solutions, by using its autonomous chaotic movement. Gener-
ally, a solution that lies on the bottom of the widest valley may be a better solution if POP
holds. In particular, in the case of a problem in which the landscape is convex when viewed
globally, the solution may be a global minimum or its neighbor solution. Thus, the DGCMwT
has the diversification strategy due to its autonomous chaotic global search trajectory and the
intensification strategy due to its convergence property. However, the DGCMwT converges
to only one solution, which lies on the widest valley. If the obtained solution does not lie on
the lowest valley, the DGCMwT cannot provide the global minimum. In the present paper,
multiple points search using the DGCMwT and then synchronize to elite search points, the
objective function values of which are smaller. Generally, it is expected that multipoint search
models perform better than single-point search models, even if the original model is simply
multiplexed, because the diversity is increased. In the proposed model, an increased intensifi-
cation strategy, which takes the objective function value into consideration, is introduced to all
search points by synchronizations to elite search points with new coupling structures, which
are specialized for the optimization. This is a unique feature point of the proposed method. In
the proposed method, the behavior of search points is transitioned from the “diverse search
mode (the global search phase)”, in which each search point autonomously implements the
global search without being trapped at local minima driven by the chaotic dynamics to the
“intensive search mode (the local search phase)”, in which the objective function value is
taken into consideration. This transition is achieved by the synchronization phenomenon in
nonlinear dynamic systems. Therefore, in the intensive search mode, each search point still
implements autonomous search while maintaining its chaotic search capability, i.e., while
maintaining the diversification to some extent, although each search point is synchronized
to elite search points and is given the intensification strategy. Thus, by introducing the syn-
chronization to elite search points, we hope to provide a greater advantage than that given
by the simple multiplexing to the proposed model.

2 Discrete gradient chaos model

Let us consider a gradient model (steepest descent method) to solve the optimization problem
of Eq. 1:

dx(t)

dt
= −∇E(x(t)). (2)

The optimal solution obtained by the gradient model of Eq. 2 is the local minimum in the
neighborhood of the initial point. Thus, the gradient model is not effective for global optimi-
zation. In order to provide global search ability to the gradient model, the Discrete Gradient
Chaos Model (DGCM) has been proposed [1–3]. In the DGCM, the chaotic search trajectory
is generated as follows. (1) The trajectory obtained by Eq. 2 is confined to the lower and upper
constraints. (2) This confined trajectory is discretized by Euler’s differentiation technique.
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Fig. 1 Bifurcation Diagrams when the DGCM is Applied to Prob. 6. A bifurcation diagram shows the search
trajectory after a sufficient time under fixing �T , which starts from each local minimum. In other words, a
bifurcation diagram shows the search range that a chaotic search point can cover w.r.t. �T . In chaos annealing,
the search process of the single-point DGCM corresponds to a right-to-left process. As a result of the existence
of the boundary crisis, the single-point DGCM converges to local minimum No. II, which is adjacent to the
boundary

(3) This trajectory is destabilized by a tuning of its sampling parameter. The study of the
DGCM was started from chaos neural networks [1], and the DGCM has been investigated
in several studies. The DGCM with the inner state model and linear annealing is generally
given by

u(k + 1) =
(

1− �T (k)

τ

)
u(k)−�T (k)∇E(x(k)) (3a)

xi (k) = qi + pi exp(−ui (k))

1+ exp(−ui (k))
(3b)

�T (k) = �Tmax

(
1− k

kmax

)
(3c)

where �Tmax, kmax > 0, τ � 1, (3d)

where u is the unconstrained inner state vector, �Tmax is the initial value of the sampling
parameter, �T (k) is the sampling parameter at k, kmax is the maximum number of search
steps, and τ is the parameter of a barrier function, which perturbs optimal solutions on the
boundary into the interior of the lower or upper bounds.

Let us consider the optimal solution obtained by the single-point DGCM Eq. 3. First, the
single-point DGCM without the annealing of Eq. 3c is applied to Prob. 6 (Original Rastrigin
N = 4, see Appendix A). The bifurcation diagram w.r.t. �T is shown in Fig. 1, where bifurca-
tion diagrams show the search trajectory after a sufficient time under fixing �T , which starts
from local minimum No.I (0.0, . . . , 0.0) or No. II (3.9789, . . . , 3.9789).1 In chaos annealing,
�T is transitioned from a large value to a small value, that is, the search process of the single-
point DGCM corresponds to a right-to-left process in Fig. 1. Hence, the single-point DGCM
converges to local minimum No. II (which is not the global minimum). The two-bifurcation
point �T2, which is a boundary point of the sampling parameter between the fixed-point
convergence and the two periodic oscillations, and the existence of a boundary crisis of the
chaos dynamics cause this matter. In other words, the two-bifurcation point �T2 of local

1 Note that this problem has other local minima.
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minimum No. II is the largest among all local minima, and the bifurcation starting from local
minimum No. II does not generate a boundary crisis. Therefore, by chaos annealing, the
search trajectory transitions from the chaotic trajectory to the stable trajectory converging to
local minimum No. II. Even if multipoint DGCM with chaos annealing is executed in paral-
lel, all search points converge to local minimum No.II. The convergence property of chaos
annealing that is governed by this bifurcation scenario is valid in optimization problems of
normal multi-peaked objective functions with no plateaus. The difference of �T2 is related
to the orbital stabilities of each local minimum. Let us consider the orbital stabilities of a
local minimum x∗. Let the inner state corresponding to x∗ be u∗ and its dynamics Eq. 3a be
g(u), respectively, that is,

g(u) =
(

1− �T

τ

)
u −�T∇E(x) (4a)

xi = qi + pi exp(−ui )

1+ exp(−ui )
. (4b)

Let us consider the Jacobian of g under τ � 1

Dg(u∗) = I −�T A(u∗), (5a)

where A(u∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x1

∂u1

∂2 E(x∗)
∂x2

1

· · · ∂xN

∂uN

∂2 E(x∗)
∂xN ∂x1

...
. . .

...

∂x1

∂u1

∂2 E(x∗)
∂x1∂xN

· · · ∂xN

∂uN

∂2 E(x∗)
∂x2

N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5b)

Let eigenvalues of Dg(u∗) be λ1(u∗), . . . , λn(u∗) in descending order of their absolute
values. The stability of the local minimum u∗ is then governed by λ1. Next, we consider
two-bifurcation point �T2 using λ1(u∗). Let the eigenvalues of A(u∗) be λa(u∗). Then, the
eigenvalues of Dg(u∗) are given by

λi (u∗) = 1−�T λa
i (u∗). (6)

Let the eigenvalue with the largest absolute value in λa(u∗) be λa
1(u∗). Then, since A(u∗) is

a positive definite matrix, if 0 < λa
1(u∗) ≤ 2/�T , then |λi (u∗)| < 1 and the local minimum

u∗ is stable. Whereas, if λa
1(u∗) > 2/�T , then

λ1(u∗) = 1−�T λa
1(u∗) < −1 (7)

and u∗ is unstable. Hence, two-bifurcation point �T2(u∗), which is the boundary between
the fixed point convergence and the two periodic oscillations, is given by

�T2(u∗) = 2

λa
1(u∗)

(8)

as the boundary value, where λa
1(u∗) changes from a stable eigenvalue, which makes the local

minimum u∗ stable, to an unstable eigenvalue, which makes the local minimum unstable.
For example, in the case of one-variable problems, a unique eigenvalue λa

1(u∗) is given by
the following using Eq. 7:

λa
1(u∗) = dx

du

d2 E(x∗)
dx2 . (9)
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Hence, �T2(u∗) is given by

�T2(u
∗) = 2

dx

du

d2 E(x∗)
dx2

. (10)

The DGCM tends to converge to the optimal solution x∗, the �T2 of which is larger, as stated
above, and

dx

du
= (q − p) exp(−u)

(1+ exp(−u))2 > 0. (11)

The closer x∗ is to the upper or lower boundary, the smaller the dx/du. Similarly, in the
case of multiple-variable problems, we expect that eigenvalue λ1(u∗) is smaller at the local
minimum, which is located adjacent to the boundary. Hence, the DGCM tends to converge
to the optimal solution, which is located adjacent to the upper or the lower boundary. This is
one of the drawbacks of the DGCM.

In order to overcome this drawback, we propose that the confining method be changed
from the expression by inner states to the toroidalization of the constraint [8]. In this method,
the search region is transformed into an N -dimensional torus. An image of this method is
shown in [8] (Fig. 1). The search is then executed in this torus, and the trajectory is confined
to the constraint. The DGCM with toroidalization of the constraint is given by

x′(k + 1) = x(k)−�T (k)∇E(x(k)) (= g(x)) (12a)

xi (k + 1) = f̃ (x ′i (k + 1)) (12b)

f̃ (x ′i ) =

⎧⎪⎨
⎪⎩

x ′i , pi ≤ x ′i ≤ qi

(x ′i − pi )mod(qi − pi )+ pi , x ′i > qi

(x ′i − qi )mod(qi − pi )+ qi , x ′i < pi

(12c)

�T (k) = �Tmax

(
1− k

kmax

)
(12d)

where �Tmax, kmax > 0. (12e)

This model is referred to herein as the DGCMwT. In the case of the DGCMwT, the Jacobian
is given by

Dg(x∗) = I −�T∇2 E(x∗), (13)

where ∇2 E(x) is the Hessian of E(x). Let the eigenvalues of ∇2 E(x) be λ∇2
. Then, two-

bifurcation point �T2(x∗) is given by

�T2(x∗) = 2

λ∇2

1 (x∗)
, (14)

and, in the case of one-variable problems, �T2(x∗) is given by

�T2(x∗) = 2

d2 E(x∗)
dx2

. (15)

Hence, the DGCMwT tends to converge to the local minimum, where only d2 E(x∗)/dx2

(or λ∇2

1 , for multiple-variable problems) is smaller, and we expect that the abovementioned
drawback of the DGCM is improved. Actually, the bifurcation diagram of the application of
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Fig. 2 Bifurcation Diagrams when the DGCMwT is Applied to Prob. 6. The stabilities of all local minima
are approximately equal in Prob. 6. Therefore, �T2 should be approximately equal in this problem. �T2 are
approximately equal, and there is no boundary crisis in this figure, in which the DGCMwT is applied, whereas
�T2 were not equal, and the boundary crisis existed in Fig. 1, in which the DGCM was applied

the DGCMwT to Prob. 6 (Fig. 2) confirms this improvement. Thus, the DGCMwT provides
the most stable local minimum as the optimal solution without relation to its position or
the constraint. Generally, such solutions lie on the bottom of the widest valley, which has
the widest attraction range of all solutions. Such solutions may be better solutions if POP
holds. In particular, in the case of a problem in which the landscape is convex when it is
viewed globally (for example Prob. 6), the solution may be a global minimum or a neighbor
solution. However, the DGCMwT converges to only one solution. If the solution does not
lie on the lowest valley, then the DGCMwT cannot provide the global minimum. Hence,
the DGCMwT should be improved in order to provide diversity, i.e., the possibility of the
trajectories searching in multiple valleys, and at the same time, the DGCMwT should be
improved to provide an increased intensification strategy, which takes the objective function
value into consideration, i.e., the strategy that intensively searches the regions in which the
objective function value is smaller.

3 Synchronization phenomena of coupled nonlinear oscillators

In the present paper, we achieve the abovementioned improvements with a synchronization of
chaotic search trajectories. Coupled nonlinear oscillators generate synchronization phenom-
ena. Here, the DGCMwT is a nonlinear oscillator in a discrete time system. Consequently, in
this chapter, synchronization phenomena in discrete time systems are discussed with respect
to continuous time systems.

3.1 Synchronization phenomena in continuous time systems

Generally, the coupled oscillators system with N variables in continuous time systems is
formulated as

dx p(t)

dt
= f p(x p(t))+ c�({x j (t)}, x p(t)), p = 1, . . . , P. (16)
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Let � express a coupling structure, and let the pth oscillator dx p(t)/dt = f p(x p(t)) be
periodic. � in Eq. 16 includes the following structures:

(a) global diffusive coupling

�({x j (t)}, x p(t)) =
P∑

j=1

{
x j (t)− x p(t)

}
, (17)

(b) closest convective coupling (periodic bound)

�({x j (t)}, x p(t)) = x p+1(t)− x p(t). (18)

It is known that Eq. 16, in which coupling (a) or (b) is employed as �, generates synchroni-
zation phenomena if the coupling coefficient c(>0) exceeds a certain value [9].

3.2 Synchronization phenomena in discrete time systems and PD type coupling model

Differential equations in continuous time systems can be transformed into corresponding
discrete maps, that is, each oscillator’s differential equation with no coupling:

dx p(t)

dt
= f p(x p(t)) (19)

can be transformed into a corresponding discrete map:

x p(k + 1) = g p(x p(k)). (20)

Let us consider a coupling model that consists of discrete maps. By replacing t in Eq. 16 by
k naively, we can obtain a coupling discrete map:

x p(k + 1) = g p(x p(k))+ c�({x j (k)}, x p(k)). (21)

However, setting c to a large value in order to cause synchronization phenomena has been
reported to result in divergences of trajectories in the system Eq. 20 and makes the system
unstable [10]. In the following part of this section, another synchronization model of coupled
discrete oscillators is considered for emerging synchronizations in the discrete time optimi-
zation model, such as the DGCMwT. The derivation of such a coupled discrete oscillators
system includes the derivation of Fujisaka and Yamada [10] using Poincare maps. In the
present paper, we introduce a simpler derivation using Proportional-Derivative (PD) type
coupling and Euler’s differentiation technique.

Let us introduce a coupling using a proportional term and a derivative term into Eq. 16.
We then obtain

dx p(t)

dt
= f p(x p(t))+ c�

({
x j (t)+�T

dx j (t)

dt

}
, x p(t)+�T

dx p(t)

dt

)
. (22)

Let �T > 0. We herein refer to the coupling structure � in Eq. 22 as the PD type coupling
structure. The PD type coupling structure is characterized by the estimation mechanism in the
sense of the coupling with the states after �T . Discretizing Eq. 22 by Euler’s differentiation
with a sampling parameter �T = t/k gives
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x p(t +�T )− x p(t)

�T
= f p(x p(t))+ c�

({
x j (t)+�T

x j (t +�T )− x j (t)

�T

}
,

x p(t)+�T
x p(t +�T )− x p(t)

�T

)
(23)

x p(t +�T ) = x p(t)+�T f p(x p(t))+�T c�
(
{x j (t +�T )}, x p(t +�T )

)
.

Let us define the Euler’s discrete mapping of Eq. 19

x p(t +�T ) = x p(t)+�T f p(x p(t)) (24)

as

x p(k + 1) = g p(x p(k)), where t = k�T . (25)

Redefining �T c as c in Eq. 23 gives

x p(k + 1) = g p(x p(k))+ c�({x j (k + 1)}, x p(k + 1)) (26)

as a discrete mapping of Eq. 22. Furthermore, setting

xi =
⎛
⎜⎝

x1
i
...

x P
i

⎞
⎟⎠ , X = [

x1, . . . , x p] , gi (X) =
⎛
⎜⎝

g1
i (x1)

...

gP
i (x P)

⎞
⎟⎠ (27)

and solving Eq. 26 for X (k + 1) gives

xi (k + 1) = C−1 gi (X (k)). (28)

For example, if the coupling structure is the global diffusive coupling Eq. 17, then matrix C
is given by

Ci j =
{

(P − 1)c + 1 ( j = i)

−c ( j �= i),
(29)

and if the coupling structure is the closest convective coupling Eq. 18, then matrix C is given
by

Ci j =

⎧⎪⎨
⎪⎩

c + 1 ( j = i)

−c ( j = i + 1)

0 ( j �= i, i + 1).

(30)

In the present paper, we refer to this model as the PD type coupling model. This model uses
the coupling structure (D type), which “estimates” the j th search point’s position at time
k + 1, as well as the conventional coupling structure (P type). Therefore, we expect that
this new coupling model will generate more stable synchronization phenomena in coupled
discrete oscillations, compared to those generated by the conventional coupling model.

3.3 Simulation and discussion

In this section, the effectiveness of the PD type coupling model for the synchronization of
chaotic trajectories is confirmed through a simulation and stability analysis.
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Fig. 3 Bifurcation diagrams of the differences between each oscillator. (a) Case of Eq. 32; (b) Case
of Eq. 33

For simplicity, let P = 2 in the PD type coupling model. Then, the coefficient matrix C
is

C−1 = 1

1+ 2c

(
1+ c c

c 1+ c

)
, (31)

in the cases of both the global diffusive coupling and the closet convective coupling. Hence,
the DGCMwT synchronization model with the PD type coupling P = 2 is written as

(
x1

i
′
(k + 1)

x2
i
′
(k + 1)

)
= 1

1+ 2c

(
1+ c c

c 1+ 1c

)(
gi (x1(k))

gi (x2(k))

)
(32a)

x p
i (k + 1) = f̃ (x p

i
′
(k + 1)) (32b)

gi (x p(k)) = x p
i (k)−�T

∂ E(x p(k))

∂xi
, (32c)

where f̃ in Eq. 32b is the toroidalization function given by Eq. 12c. The model Eq. 32 was
targeted in the simulation. For comparison, a synchronization model using Eq. 21 was also
simulated. (

x1
i
′
(k + 1)

x2
i
′
(k + 1)

)
=

(
gi (x1(k))+ c(x2

i (k)− x1
i (k))

gi (x2(k))+ c(x1
i (k)− x2

i (k))

)
(33a)

x p
i (k + 1) = f̃ (x p

i
′
(k + 1)) (33b)

gi (x p(k)) = x p
i (k)−�T

∂ E(x p(k))

∂xi
(33c)

We employed benchmark problem Prob. 6 (Original Rastrigin, N = 4) as E(x) and set
the sampling parameter �T = 0.02, at which chaotic trajectories were generated. In order
to illustrate the dependence on coupling coefficients of emerging synchronizations in these
models, numerical simulations were run, changing the coupling coefficient c over the range
of c = 0.0–2.5. Bifurcation diagrams of the differences between each oscillator x1

1 − x2
1 are

shown in Fig. 3a and b. Figure 3a shows that a chaotic synchronization phenomenon emerges
stably from the PD type coupling model when c is set larger. In contrast, Fig. 3b shows that
a chaotic synchronization phenomenon does not emerge from the unstable coupling model
as Eq. 33. Thus, the PD coupling model should be used for discrete chaotic synchronization.
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Next, we consider a condition for c to generate a synchronization in the PD type coupling
model with the stability analysis. In the case of P = 2, N = 1, we derive the condition in

Appendix B. Let λ be the Lyapunov index λ =
〈
ln

∣∣∣∣g(x∗)
dx

∣∣∣∣
〉
. Then, the condition is given by

exp(λ)

1+ 2c
< 1. (34)

Hence, setting c to a larger value generates the chaotic synchronization phenomenon using
the PD type coupling model. In the case of P = 2, N > 1, a similar discussion is not easy.
However, we can rewrite Eq. 50 (in Appendix B) as

(
δx1

i (k + 1)

δx2
i (k + 1)

)
= C−1

N∑
j=1

{
∂gi (x∗(k))

∂x j

(
δx1

j (k)

δx2
j (k)

)}
. (35)

Equation 35 suggests that c is a similar factor in the case of P = 2, N > 1. That is, we expect
that setting c to a larger value generally provides the emergence of the chaotic synchronization
phenomenon.

In this section, we confirm the emergence of the chaotic synchronization phenomenon
in the gradient system using the PD type coupling model. In the next chapter, we propose
a new optimization model by introducing this synchronization phenomenon with the PSO
type advective coupling model (described in the following chapter).

4 A global optimization model using a synchronization
of chaotic multiple search points

In this chapter, we propose a new multipoint type global optimization model in which each
search point is autonomously driven by the DGCMwT and their search trajectories are syn-
chronized by the PD type coupling model to their elite search points. The proposed model
provides an increased diversification strategy by multiple-point autonomous chaotic search
and an increased intensification strategy, which takes the objective function value into consid-
eration, in addition to that of the DGCMwT. We illustrate the capability of the proposed model
through numerical simulations, in which the model is applied to several “proper” benchmark
problems, the dimension of variables of which is 100 (N = 100) and 1000 (N = 1000).

4.1 Proposed model

Let us consider that P search points are autonomously driven by the DGCMwT. This uncou-
pled multipoint type DGCMwT can search in multiple valleys. However, as mentioned in
Chapter 2, nearly all of the trajectories are trapped at the most stable local minima, which
are not always global minima, after the annealing. Therefore, we present an intensification
strategy based on the objective function value and try to overcome this property. In order to
provide the intensification, we introduce the PD type coupling model, in which the search
trajectory of each search point synchronizes to the elite search points inspired by PSO. The
elite search points are classified as follows:

1. An elite search point of “each search point” “until” the time k (personal best : pbest)

pbp(k) = argmin
x p(i)

{
E(x p(i)) | i = 0, . . . , k

}
(36)
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2. An elite search point of “all search points” “until” the time k (global best : gbest)

pbgb(k) = argmin
pbp(k)

{
E( pbp(k)) | p = 1, . . . , P

}
(37)

3. An elite search point of “all search points” “at” the time k (current best : cbest)

xcb(k) = argmin
x p(k)

{
E(x p(k)) | p = 1, . . . , P

}
. (38)

In the proposed model, each search point is coupled with two elite search points, one is pbest
and the other (which is represented as gcb) is gbest or cbest. Let x j (k + 1) of � in the PD
type coupling model of Eq. 26 be gcb and pbp and g(x p(k)) be the map of the DGCMwT.
Then, the PD type coupling model with the DGCMwT and the aforementioned elite search
points are given by

x p ′(k + 1) = g(x p(k))+ c1(gcb(k + 1)− x p ′(k + 1))

+ c2( pbp(k + 1)− x p ′(k + 1)). (39)

We refer to the coupling structure given in Eq. 39 as the PSO type advective coupling. For
calculating Eq. 39, we cannot determine gcb(k + 1) or pbp(k + 1) at time k. We consider
the possibility of updates of elite search points at one step (k → k + 1) to be small, and then
let gcb(k+ 1) ≈ gcb(k) and pbp(k+ 1) ≈ pbp(k). Solving Eq. 39 for x p ′(k+ 1) with this
assumption, we obtain a new optimization model:

x p ′(k + 1) = 1

1+ c1 + c2
g(x p(k))+ c1

1+ c1 + c2
gcb(k)

+ c2

1+ c1 + c2
pbp(k) (40a)

x p
i (k + 1) = f̃ (x p

i
′
(k + 1)) (40b)

gi (x p(k)) = x p
i (k)−�T (k)

∂ E(x p(k))

∂xi
(40c)

�T (k) = �Tmax

(
1− k

kmax

)
. (40d)

This model achieves intensification based on the objective function value with the synchroni-
zation of chaotic search points. However, if c1, c2 are fixed at a certain value, then complete
synchronization phenomena are generated, that is, the diversity of the search trajectory may
be lost,2 especially, in the local search phase. In order to maintain the diversity with the
intensification, c1, c2 in Eq. 40a are replaced by sin2(2πk/T )c̄1, sin2(2πk/T )c̄2. In other
words, the synchronization and non-synchronization of the search trajectories are repeated
by changing c1, c2 periodically. Finally, we propose the following model:

x p ′(k + 1) = 1

1+ c1(k)+ c2(k)
g(x p(k))+ c1(k)

1+ c1(k)+ c2(k)
gcb(k)

+ c2(k)

1+ c1(k)+ c2(k)
pbp(k) (41a)

x p
i (k + 1) = f̃ (x p

i
′
(k + 1)) (41b)

2 Note however that all search points are moved with the same trajectory.
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Table 1 Parameters in
EC-DGCM

Parameter Explanation

P Number of search points
c̄1, c̄2 Maximum coupling coefficient
T Period of reiteration between synchronization

and non-synchronization
kmax Steps of the search
�Tmax Initial sampling parameter

f̃ (x p
i
′
) =

⎧⎪⎨
⎪⎩

x p
i
′
, pi ≤ x p

i
′ ≤ qi

(x p
i
′ − pi )mod(qi − pi )+ pi , x p

i
′
> qi

(x p
i
′ − qi )mod(qi − pi )+ qi , x p

i
′
< pi

(41c)

gi (x p(k)) = x p
i (k)−�T (k)

∂ E(x p(k))

∂xi
(41d)

�T (k) = �Tmax

(
1− k

kmax

)
(41e)

c1(k) = c̄1 sin2
(

2πk

T

)
, c2(k) = c̄2 sin2

(
2πk

T

)
(41f)

pbp(k) = argmin
x p(i)

{
E(x p(i)) | i = 0, . . . , k

}
(41g)

gcb(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

argmin
pbp
{E( pbp(k)) | p = 1, . . . , P}
or

argmin
x p(k)

{E(x p(k)) | p = 1, . . . , P} .
(41h)

We refer to this model as the Elite Coupling type Discrete Gradient Chaos Model (EC-
DGCM). The proposed optimization model is easily coded (especially, if the DGCM or PSO
has been conducted). The pseudo code of the proposed model is given in Appendix C. We
can change the behavior of the EC-DGCM through the choice of the elite search point of
all search points. In the case of the EC-DGCM with gbest, as the population synchronizes
to gbest, the search trajectories gradually shift from the autonomous global search to the
concentrative search in the neighborhood of gbest. However, using only coupling with gbest
causes concentration on gbest and reduces the diversity in the local search phase. Each search
point’s coupling with pbest prevents concentration and maintains diversity. On the other hand,
in the case of the EC-DGCM with cbest, since the population synchronizes to cbest, which
is updated at each step, the population searches in regions where the objective function value
is smaller, while maintaining diversity to a certain extent. In this case, pbest is considered to
act as “a storage search point”, which stores good solutions, rather than “a fluctuation search
point”.

Next, we refer to the parameters in the EC-DGCM. Table 1 shows the parameters in the EC-
DGCM. We should set P and kmax considering the trade-off between the solution precision
and the calculation cost (we use a fixed value in the present paper). �Tmax must be set to a
certain value, by which chaotic trajectories are generated. c̄1, c̄2 and T govern the balance
between the diversification and the intensification. Taking the fact that the DGCMwT con-
verges to any local minimum and the EC-DGCM tends to generate complete synchronization
in the local search phase into consideration, we use settings that stress diversification for these
parameters.
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Fig. 4 Search Trajectories when the EC-DGCM is Applied to Prob. 6. (a) with gbest; (b) with cbest

4.2 Numerical simulations

In this section, we illustrate the effectiveness of the EC-DGCM through numerical simula-
tions.

We first applied the EC-DGCM to Prob. 6 (Original Rastrigin, N = 4) in order to dem-
onstrate the search trajectories. In this simulation, we used the following parameter settings:

P = 10, kmax = 4000, c̄1 = c̄2 = 0.05, T = 500, (42)

which are fixed for all simulations hereinafter, and we set �Tmax = 0.03 for this simulation
only. We employed both gbest and cbest on gcb and then executed simulations with these
conditions. We show the search trajectories in these simulations in Fig. 4. Figure 4a shows
the search trajectory of the EC-DGCM with gbest, and Fig. 4b shows the search trajectory of
the EC-DGCM with cbest. Both figures show that each search point is autonomously driven
by the DCGMwT and synchronizes to the trajectory that searches the neighborhood of elite
search points. The search points then converge to global minima without being trapped at
local minima. As mentioned earlier, the behaviors of search trajectories differ between the
EC-DGCM with gbest and that with cbest. In the EC-DGCM with gbest, since gbest tends to
remain constant, the population tends to search the neighborhood of gbest intensively with
some loss of diversity due to the synchronized trajectory. In comparison, because cbest is
updated at each step and tends to remain in regions where the objective function value is
smaller, the population tends to search the regions while maintaining some degree of diver-
sity. Note that the plots of the search trajectory of cbest become dense in the neighborhood
of local minima in Fig. 4b. Thus, the behaviors differ between gbest and cbest, although
both converge to the global minimum while generating the synchronization phenomena with
the elite search points, and the effectiveness of the EC-DGCM is confirmed through this
simulation.

Next, we confirm the global search capability of the EC-DGCM through application to
five proper benchmark problems (N = 100). In the simulation, we gave careful consideration
to the following points:

(a) Proper benchmark problems
Typical benchmark problems have several drawbacks, as reported by Liang et al. in
[11,12]. One of these drawbacks is that they have the same values among all variables
at the global minimum. Another is that there is no linking among all of the variables.
Hence, by application only to typical benchmark problems, we cannot properly evaluate
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the global optimization capability of an optimization method. In the present paper, we
use proper benchmark problems, which avoids the abovementioned drawbacks. Spe-
cifically, the position at the global minimum is displaced randomly for each variable.
Then, if there is no linking among all of the variables in the problem, their axes are
rotated using the following equation:

x̃ = Rx (43a)

R = T 12 × T 13 × · · · × T 1N × T 23 × · · · × T N−1N (43b)

T i j
kl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos α k = i, l = i

− sin α k = i, l = j

sin α k = j, l = i

cos α k = j, l = j

1 k = l �= i, j

0 not above,

(43c)

where T i j is N × N matrix. (43d)

This rotation procedure is necessary for Prob. 4 and Prob. 5. These proper benchmark
problems are shown in Appendix A.

(b) Gradient computation
In order to compute the gradient, we use automatic differentiation (AD) with the ADOL-
C tapeless forward mode [13,14]. Automatic differentiation computes the target func-
tion and its gradient simultaneously. The computation amount of this procedure is at
most a constant times the computation amount of the target function. In other words,
let the computation amount of a function f be L( f ), then

L(E(x)) = nL(E(x),∇E(x))

where (E(x),∇E(x)) is computed with AD.
(44)

Actually, we check n ≈ 5 through numerical experiments for all benchmark problems
in the case of N = 100.

(c) Comparison with other methods
For comparison, we also apply several other global optimization methods to the same
problems. Since the EC-DGCM uses the gradient, we choose global optimization meth-
ods that also use the gradient. Specifically, we choose the following methods:
1. TRUST (Terminal Repeller Unconstrained Subenergy Tunneling) [15]

This is a hybrid algorithm in which a Tunneling Algorithm and a function trans-
formation method are used. The function transformation is used in the tunneling
procedure.

2. HDA (Hybrid Descent Algorithm) [16]
This is a hybrid algorithm in which Simulated Annealing and the Descent Method
are used. Simulated Annealing is used in the global search phase, and the Decent
Method is used in the local search phase.

3. GRPSO (hybrid GRadient and Particle Swarm Optimization) [17]
This is a hybrid algorithm in which PSO and the Decent Method are used. Particle
Swarm Optimization is used in the global search phase, and the Decent Method
is used in the local search phase. In [17], the repulsion technique [18] is used in
the PSO procedure. However, we do not use the repulsion technique, because the
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Table 2 Results for Prob. 1 (Modified Levy No. 5 N = 100). �Tmax = 0.02

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 100 0 0 0 0 40000 0
EC-DGCM with gbest 100 0 0 0 0 40000 0

with cbest 100 0 0 0 0 40000 0
TRUST 0 171.900 291.754 207.867 125.279 4614 176929
HDA 100 0 0 0 0 737 196317
GRPSO 0 91.199 1810.950 179.324 29.505 206 198975

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/5(= n) > 40,000
(please see Eq. 45)
The bold font denotes that its evaluation is the best among all models

GRPSO without the repulsion technique provides better results than that with the
repulsion technique in the benchmark problems in the present paper.

The parameters in these methods are adjusted in order to perform best for the benchmark
problems. The termination criteria in these models should be set fairly with respect to
the computation cost. The EC-DGCM mainly costs P × kmax AD calls (which com-
putes the target function and its gradient simultaneously). In this simulation, the number
of AD calls for the EC-DGCM is 40,000 (P = 10, kmax = 4000). Thus, we use the
following termination criterion:

AD calls+ objective function calls/n > 40,000. (45)

We use n = 5, taking the discussion in (b) into consideration in the case of N = 100.
In the EC-DGCM, fixed parameters P, c̄1, c̄2, T, kmax were set as Eq. 42. �Tmax was

set to generate chaotic trajectories for each of the problems. Both the gbest-type and the
cbest-type were simulated. In addition, the non-coupling type was also simulated. Note that
the non-coupling type corresponds to running P(= 10) DGCMs in parallel. We then ran 100
trials, randomly resetting the initial points. The results are shown in Tables 2–6. We evaluate
the results using following indices:

• CR : Convergence Rate to global minima.
• DA : Deviation Average. Deviation is calculated as⎧⎨

⎩
E(x)− E(x∗) |E(x∗)| < 1
E(x)− E(x∗)
|E(x∗)| |E(x∗)| ≥ 1

(46)

where x∗ is the global minimum.
• Var : Variance of Deviation.
• Worst : Worst objective function value obtained as a result in all trials.
• Best : Best objective function value obtained as a result in all trials.

We also show the following indices regarding computation cost:

• AD Calls : Number of Automatic Differentiation (AD) Calls. AD computes the objective
function value and its gradient simultaneously.

• OF Calls : Number of Objective Function Calls.

Note that each method is applied fairly with respect to computation cost, as mentioned
above. In Tables 2–6, the bold font denotes that its evaluation is the best among all mod-
els. The average computation time of the EC-DGCM for each problem is 9.0–13.5(s) with
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Table 3 Results for Prob. 2 (Modified Griewank N = 100). �Tmax = 150

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 0.00483 2.907e−06 0.00898 0.00059 40000 0
EC-DGCM with gbest 0 0.00611 7.879e−06 0.01988 0.00129 40000 0

with cbest 0 0.00342 2.315e−06 0.00960 0.00051 40000 0
TRUST 0 1.07882 7.789e−05 1.10375 1.05862 16629 116856
HDA 0 0.00759 1.932e−05 0.01963 0.00030 1101 194497
GRPSO 0 0.89598 4.507e−02 1.01053 0.15580 1354 193235

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/5(= n) > 40,000
(please see Eq. 45)
The bold font denotes that its evaluation is the best among all models

Table 4 Results for Prob. 3 (Modified Rosenbrock’s Saddle N = 100). �Tmax = 0.001

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 2 0.647 1.129 4.344 0 40000 0
EC-DGCM with gbest 0 122.806 4753.270 245.436 0.0899 40000 0

with cbest 0 107.206 5290.080 251.401 0.1423 40000 0
TRUST 0 1.631 3.799 3.995 0.0002 12959 135204
HDA 0 94.301 7424.660 302.084 0.0005 1607 191964
GRPSO 0 341.983 2289.730 498.252 221.9670 101 199500

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/5(= n) > 40,000
(please see Eq. 45)
The bold font denotes that its evaluation is the best among all models

Table 5 Results for Prob. 4 (Modified2N -minima N = 100, α = π/4). �Tmax = 0.015

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 27 0.00385 8.723e−06 0.01083 0 40000 0
EC-DGCM with gbest 88 0.00047 1.734e−06 0.00722 0 40000 0

with cbest 88 0.00051 2.090e−06 0.00722 0 40000 0
TRUST 0 0.06918 2.135e−04 0.10327 0.04146 436 197820
HDA 0 0.02222 7.370e−05 0.04331 0.00722 64 199680
GRPSO 0 0.02387 1.013e−04 0.05053 0.00361 61 199700

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/5(= n) > 40,000
(please see Eq. 45)
The bold font denotes that its evaluation is the best among all models

“AMD OpteronTM252 (2.6 GHz)”. Except for Table 4, the results show that the EC-DGCM
is more effective than other methods. As for the comparison of gbest and cbest, we consider
cbest to be better because the EC-DGCM with cbest searches the regions in which the objec-
tive function value is smaller while maintaining diversity to some extent. Furthermore, its
search trajectories do not synchronize completely, and not all of the search points concentrate
to a certain search point in the local search phase. Hence, they search regions in which the
objective function is smaller in the global search phase while maintaining diversity using the
chaotic dynamics, and then each search point converges to a different local minimum, each
of which is close to the others and lies in the lowest region of the feasible region. Thus, the
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Table 6 Results for Prob. 5 (Modified Rastrigin N = 100, α = π/4). �Tmax = 0.03

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 6 13.442 292.716 81.587 0 40000 0
EC-DGCM with gbest 14 2.756 5.462 9.950 0 40000 0

with cbest 95 0.050 0.047 0.995 0 40000 0
TRUST 0 1316.820 19302.700 1566.950 963.850 40 199800
HDA 0 1254.670 22165.600 1605.830 965.101 246 198769
GRPSO 0 937.351 52782.600 1408.700 465.638 41 199802

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/5(= n) > 40,000
(please see Eq. 45)
The bold font denotes that its evaluation is the best among all models

EC-DGCM with cbest achieves diversification and intensification properly, and so is effec-
tive for the global optimization. Here, the result of Table 4 is discussed. Prob. 3 has a bent
ridge structure [19] (a valley in which a global minimum lies is bent, and the variation of the
objective function value along the bent direction is much smaller than that along the other
directions). Hence, an optimization method, which descends gradually along the descent
direction given by the gradient, tends to provide good results on Prob. 3. TRUST implements
the abovementioned search suitable for Prob. 3 and performs well. The EC-DGCM without
coupling also implements a search suitable for Prob. 3 in the local search phase. However,
couplings with elite search points prevent the search suitable for Prob. 3. Therefore, the
EC-DGCM with gbest and cbest do not perform well.

Next, we confirm the variation of the global search capability of the proposed model w.r.t.
P through application to the same problems (N = 100). In this simulation, we employed
cbest on gcb and used the same parameters, except P . We applied the EC-DGCM with cbest
and without couplings, setting P = 2, 5, 15. The results are shown in Fig. 5. The results show
that an increase of P increases the optimization capability. This increase peaks out when P
is enlarged to a certain degree. In addition, the results show the effect of coupling with elite
search points even in the situation of a small number of search points, except for (b). Hence,
we should use coupling with elite search points and enlarge P to a degree.

Furthermore, we applied the EC-DGCM to proper benchmark problems with 1000 vari-
ables (N = 1000). Fixed parameters P, c̄1, c̄2, T, kmax were set as Eq. 42, as in the case of
N = 100, essentially. For Prob. 5, we used c̄1 = c̄2 = 0.1. For Prob. 2, a local search (Ar-
mijo’s linear search [20]) was implemented for a small number of steps after the termination
of global search. As for the computation cost ratio between AD Calls and OF Calls, n = 50
was used for Prob. 1, Prob. 2, and Prob. 3, and n = 15 was used for Prob. 4 and Prob. 5
(please see Eq. 45). The non-coupling type EC-DGCM and the other methods for compar-
ison were also applied. We then ran 20 trials, randomly resetting initial points. The results
are shown in Tables 7–11. We also evaluated the results using the indices mentioned earlier.
In Tables 7–11, the bold font denotes that its evaluation is the best among all models. In
Tables 8, 10 and 11, the EC-DGCM is also more effective than other methods. Meanwhile, in
Table 7, the HDA performs better (although the performance of the EC-DGCM is similar to
the performance of the HDA). In Table 9, the non-coupling type EC-DGCM and HDA per-
forms better. This trend also exists in the results for 100-variable problems. We consider this
trend to increase for 1000-variable problems. On the whole, we also consider the EC-DGCM
to be effective for very high dimensional problems.
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Fig. 5 Variation of Global Search Capability w.r.t. P . The results of P = 10 are from Tables 2–6. For
Prob. 1, the convergence rates of all results are 100%. Hence, these results are not shown

Table 7 Results for Prob. 1 (Modified Levy No. 5 N = 1000). �Tmax = 0.02

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 37.452 2.517 39.659 34.258 40000 0
EC-DGCM with gbest 75 7.700e−04 1.779e−06 0.003 0 40000 0

with cbest 75 7.704e−04 1.780e−06 0.003 0 40000 0
TRUST 0 167.331 35.639 179.360 157.241 3037 1848150
HDA 100 0 0 0 0 3202 1839920
GRPSO 0 160.879 16.382 169.402 154.760 101 1994960

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/n > 40,000 (see
Eq. 45)
The bold font denotes that its evaluation is the best among all models

5 Conclusion

In the present paper, we propose a new global optimization model, EC-DGCM, in which
multiple search points are autonomously driven by the chaotic dynamic model and synchro-
nize to elite search points with the PD type coupling model. The proposed model has the
following effective diversification strategies and intensification strategies. The diversification
strategies are the autonomous search trajectory generated by the DGCM and the possibility
of searches in multiple valleys by multiple search points. The intensification strategies are
the convergence property of the DGCM to the bottom of the widest valley and the synchroni-
zation to elite search points taking the objective function value into consideration. Applying
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Table 8 Results for Prob. 2 (Modified Griewank N = 1000). �Tmax = 150

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 0.00211 8.921e−07 0.00384 0.00016 40082 708
EC-DGCM with gbest 0 0.00345 3.704e−06 0.00916 0.00145 40361 3790

with cbest 0 0.00198 4.063e−07 0.00362 0.00115 40546 5846
TRUST 0 1.00323 4.385e−09 1.00333 1.00309 39471 26494
HDA 0 0.00861 1.295e−05 0.02074 0.00499 4509 1774550
GRPSO 0 1.15672 6.078e−05 1.16332 1.12518 167 1991680

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/n > 40,000 (see
Eq. 45)
The bold font denotes that its evaluation is the best among all models

Table 9 Results for Prob. 3 (Modified Rosenbrock’s Saddle N = 1000). �Tmax = 0.001

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 399.735 6077.20 514.692 232.406 40000 0
EC-DGCM with gbest 0 1942.770 17775.60 2148.910 1591.920 40000 0

with cbest 0 1818.420 13717.00 2030.920 1527.390 40000 0
TRUST 0 4699.960 75443.60 5167.500 3963.000 101 1994960
HDA 0 650.571 44528.70 996.007 73.847 4472 1776380
GRPSO 0 4699.960 75443.60 5167.500 3963.000 101 1994960

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/n > 40,000 (see
Eq. 45)
The bold font denotes that its evaluation is the best among all models

Table 10 Results for Prob. 4 (Modified 2N -minima N = 1000, α = π/4). �Tmax = 0.015

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 0.01606 2.893e−06 0.01987 0.01156 40000 0
EC-DGCM with gbest 40 0.00040 1.288e−07 0.00108 0.00000 40000 0

with cbest 30 0.00041 1.730e−07 0.00144 0.00000 40000 0
TRUST 0 0.08046 1.454e−05 0.08811 0.07331 845 587328
HDA 0 0.03804 9.309e−06 0.04441 0.03437 3581 546286
GRPSO 0 0.04173 2.551e−05 0.05558 0.03351 101 598490

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/n > 40,000 (see
Eq. 45)
The bold font denotes that its evaluation is the best among all models

proper benchmark problems with 100 variables and 1000 variables, we confirm that the EC-
DGCM with cbest is more effective than the EC-DGCM with gbest or no coupling, as well
as other global optimization methods that use the gradient. However, the EC-DGCM has
two disadvantages. First, if the global minimum lies on the boundary, then the EC-DGCM
cannot obtain it because of the property of toroidalization. We expect that this will be solved
by redefining the confining region more widely. Second, the EC-DGCM is not useful for
problems that have a plateau or a ridge structure, such as Prob. 3. We expect that this will be
solved by taking a longer time for the local search process. In addition, a formal convergence
proof for the proposed method is not given in this paper. We herein perform a quantitative
analysis for the convergence solution of the DGCM. However, this solution is not necessarily

123



J Glob Optim (2008) 41:219–244 239

Table 11 Results for Prob. 5 (Modified Rastrigin N = 1000, α = π/4). �Tmax = 0.03

Method CR DA Var Worst Best AD Calls OF Calls

no coupling 0 5040.88 3.685e+04 5424.48 4648.42 40010 0
EC-DGCM with gbest 0 544.64 1.697e+04 816.86 333.31 40010 0

with cbest 0 153.17 6.046e+03 266.65 51.74 40010 0
TRUST 0 14007.00 2.982e+05 14980.30 13031.20 62 599066
HDA 0 8671.17 1.305e+06 10701.60 6259.24 68 598978
GRPSO 0 8484.06 7.781e+05 11030.20 7235.28 70 598960

The result of the non-coupling type corresponds to that of running P(=10) DGCMs in parallel
In the methods for comparison, we use the termination criterion as AD Calls + OF Calls/n > 40,000 (see
Eq. 45)
The bold font denotes that its evaluation is the best among all models

one of global minima, and there is no global convergence proof for the DGCM. In addition,
multiple points driven by the DGCM are synchronized in the proposed method. This makes
its dynamics more complex. Hence, it is not necessarily easy to prove mathematically that the
proposed method converges to global minima with certainty. The proposed method is heu-
ristic in that no global convergence proof is given. In the future, we will investigate solutions
to the abovementioned problems. In addition, the framework of the proposed method, that
is, the synchronization of the nonlinear dynamic optimization method to elite search points
with PD type coupling, will be expanded so as to be applicable with other methods.
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Appendix A: Benchmark problems

This appendix lists the benchmark problems that are used in the present paper. The rotation
Matrix R is given by Eq. 43. In the following, x∗ denotes the coordinates of the global
minimum (given randomly), and U (a, b) is the uniform distribution between a and b.
Prob. 1 Modified Levy No.5. The original version is given in [21].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

E( y(x)) = π

N

[
B sin2(πy1)+

N−1∑
i=1

{
(yi − A)2(1+ B sin2(πyi+1))

}+ (yN − A)2
]

yi = A + 10.0zi , z = x − x∗, x∗i = U (−0.8, 0.8)

subj. to |xi | < 1.0, i = 1, . . . , N

where A = 1.0, B = 5.0

minima: E( y(x∗)) = 0.0

Prob. 2 Modified Griewank function. The original version is given in [22].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

E(z(x)) = 1

N D

N∑
i=1

{
z2

i

}−
N∏

i=1

{
cos

(
zi√

i + 1

)}
+ 1.0

z = x − x∗, x∗i = U (−20.0, 20.0)

subj. to |xi | < 25.0, i = 1, . . . , N

where D = 2000.0

minima: E(z(x∗)) = 0.0
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Prob. 3 Modified Rosenbrock’s Saddle function. The original version is given in [23].⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x

E(z(x)) =
N−1∑
i=1

{
100.0(zi+1 − z2

i )
2 + (zi − 1)2}

z = x − x∗ + 1.0, x∗i = U (−2.4, 0.4)

subj. to − 2.0− 1.0 < xi < 2.0− 1.0, i = 1, . . . , N

minima E(z(x∗)) = 0.0

Prob. 4 Modified 2N -minima function. The original version is given in [24].⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x

E(z(x)) =
N∑

i=1

{
z4

i − 16.0z2
i + 5.0zi

}

z = R(α)(x − x∗)− 2.9035, x∗i = U (−1.0, 7.0), α = π/4

subj. to − 5.0+ 2.9035 < xi < 5.0+ 2.9305, i = 1, . . . , N

minima: E(z(x∗)) = −78.319N

Prob. 5 Modified Rastrigin function. The original version is given in [25].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

E(z(x)) = AN +
N∑

i=1

z2
i − A cos(Bπ zi )

z = R(α)(x − x∗), x∗i = U (−4.0, 4.0), α = π/4

subj. to |xi | < 5.0, i = 1, . . . , N

where A = 10.0, B = 2.0

minima: E(z(x∗)) = 0.0

Prob. 6 Original Rastrigin function [25].⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x

E(x) = AN +
N∑

i=1

x2
i − A cos(Bπxi )

subj. to |xi | < 5.0, i = 1, . . . , N

where A = 10.0, B = 2.0

minima: E(x∗) = 0.0

Appendix B: Derivation of the emergence condition of the chaotic synchronization for c

For simplicity, let N = 1 and P = 2, and let x∗(k) = x1(k) = x2(k) denote the synchro-
nization state at time k. Let us consider x p(k) = x∗(k)+ δx p(k), which is a neighborhood
point of x∗(k). Let

(
x∗(k + 1)

x∗(k + 1)

)
= C−1

(
g(x∗(k))

g(x∗(k))

)
. (47)

Then, x p(k + 1) = x∗(k + 1)+ δx p(k + 1), which is a neighborhood point of x∗(k + 1) at
time k + 1, is written as

(
x∗(k + 1)+ δx1(k + 1)

x∗(k + 1)+ δx2(k + 1)

)
= C−1

(
g(x∗(k)+ δx1(k))

g(x∗(k)+ δx2(k))

)
, (48)
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where g(x∗(k)+ δx p(k)) is written as

g(x∗(k)+ δx p(k)) ≈ g(x∗(k))+ dg(x∗(k))

dx
δx p(k). (49)

Substituting Eq. 49 into Eq. 48 gives the following difference equation:(
δx1(k + 1)

δx2(k + 1)

)
= dg(x∗(k))

dx
C−1

(
δx1(k)

δx2(k)

)
. (50)

Hence, the perturbation from the synchronization state at time k + K is written as

(
δx1(k + K )

δx2(k + K )

)
=

k+K∏
l=k

{
g(x∗(l))

dx

} (
C−1)K

(
δx1(k)

δx2(k)

)
. (51)

Let the eigenvalues of C−1 beν1, ν2 and their eigenvectors be c1, c2. Then,ν1 = 1

1+ 2c
, ν2 =

1, c1 = (1,−1)T , c2 = (1, 1)T under Eq. 31. Hence, we obtain

(
δx1(k + K )

δx2(k + K )

)
=

k+K∏
l=k

{
g(x∗(l))

dx

}
(d1ν

K
1 c1 + d2ν

K
2 c2), (52)

where d1 and d2 are non-zero coefficients. Let λ be the Lyapunov index λ =
〈
ln

∣∣∣∣g(x∗)
dx

∣∣∣∣
〉
.

Then, we obtain

λ+ ln |ν1| < 0 (53a)
exp(λ)

1+ 2c
< 1 (53b)

as a condition of the synchronization stability.

Appendix C Pseudo code of the proposed model

• Variables
x p, g p, pbp : N dimension vectors (p = 1, . . . , P)
gb, cb, gcb : N dimension vectors
E p, E p

pb : scalar values (p = 1, . . . , P)
k, c1, c2, elite,�T : scalar values

• Step1 Initialization
Set the following parameters: c̄1, c̄2,�Tmax, kmax, T, P
Initialize the search points of all search points randomly:

for p← 1 to P
for i ← 1 to N

x p
i ← U (pi , qi )

endfor
endfor
where U (a, b) generates a uniform distribution between a and b.

Initialize the time: k = 0.
Initialize the objective function value of the pbest:

for p← 1 to P E p
pb ←∞ endfor.

123



242 J Glob Optim (2008) 41:219–244

Choose the elite search point type: elite← gbest or cbest.
goto Step2.
• Step2 Evaluation for All Search Points

Calculate the gradients and objective function values of all search points:
for p← 1 to P

E p ← E(x p), g p ← ∇E(x p)

endfor.
Set the pbest for each search point:

for p← 1 to P
if E p < E p

pb then E p
pb ← E p , pbp ← x p endif

endfor.
Set the gbest:

Egb ← E1
pb, gb← pb1

for p← 2 to P
if E p

pb < Egb then Egb ← E p
pb, gb← pbp endif

endfor.
Set the cbest (if cbest is needed):

if elite is cbest then
Ecb ← E1, cb← x1

for p← 2 to P
if E p < Ecb then Ecb ← E p , cb← x p endif

endfor
endif.

Set the elite search point of all search points at k:
if elite is gbest then

gcb← gb
else if elite is cbest then

gcb← cb
endif.

goto Step3.
• Step3 Check the Termination Criterion

if k > kmax then
return Egb, gb and exit.

endif.
goto Step4.
• Step4 Main Search

Set the sampling parameter at k: �T ← �Tmax

(
1− k

kmax

)
.

Set the coupling coefficients at k: c1 ← c̄1 sin2
(

2πk

T

)
, c2 ← c̄2 sin2

(
2πk

T

)
.

Execute Chaotic Search:
for p← 1 to P x p ← x p −�T g p endfor.

Execute PD type Coupling:
C ← 1+ c1 + c2

for p← 1 to P x p ← 1

C
x p + c1

C
gcb+ c2

C
pbp endfor.

Execute Toroidalization:
for p← 1 to P

for i ← 1 to N
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if x p
i > qi then

x p
i ← (x p

i − pi )fmod(qi − pi )+ pi

else if x p
i < pi then

x p
i ← (x p

i − qi )fmod(qi − pi )+ qi

endif
endfor

endfor.
Increment the time: k ← k + 1.
goto Step2.
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